手把手教你插入数学公式,妈妈再也不用担心我写不了论文了

LaTeX是专为学术写作开发的语言和编纂程序,拥有强大的package资源,这意味着用LaTeX写作可以避免Word带来的令人头疼的排版问题,而且世界上有很多人已经写好了针对各种写作格式的coding package,我们只需要套用这些package就行了。

  • 行间公式 (inline):用$...$将公式括起来。

  • 块间公式 (displayed),用$$...$$将公式括起来是无编号的形式块间元素默认是居中显示的。

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ x = − b ± b 2 − 4 a c 2 a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} x=2ab±b24ac

  • 上下标。

_{...}表示下标,^{...}表示上标。

它默认只作用于之后的一个字符,如果想对连续的几个字符起作用,请将这些字符用花括号{}括起来, 也就是下面分组的概念。

  • 希腊字母

\alpha, \beta, ... \omega α \alpha α, β \beta β, ω \omega ω
\Gamma, \Delta, ... \Omega: Γ \Gamma Γ, Δ \Delta Δ, Ω \Omega Ω

  • 运算符
    \pm \times \div \cdot \cap \cup \geq \leq \neq \approx \equiv
    ± × ÷ ⋅ ∩ ∪ ≥ ≤ ≠ ≈ ≡ \pm \times \div \cdot \cap \cup \geq \leq \neq \approx \equiv ±×÷=
    求和:\sum_1^n: ∑ 1 n \sum_1^n 1n

求积 $\prod$ : ∏ \prod
一重积分 $\int$ \int_a^b f(x)dx ∫ a b f ( x ) d x \int_a^b f(x)dx abf(x)dx
二重积分 $\iint$ \iint_{\Omega}f(x,y)dxdy ∬ Ω f ( x , y ) d x d y \iint_{\Omega}f(x,y)dxdy Ωf(x,y)dxdy
三重积分 $\iiint$ \iiint_{\Omega}f(x,y,z)dxdydz] ∭ Ω f ( x , y , z ) d x d y d z ] \iiint_{\Omega}f(x,y,z)dxdydz ] Ωf(x,y,z)dxdydz]
曲线积分 $\oint$
微分算子 $\mathrm{d}x{d}y$ : d x d y \mathrm{d}x{d}y dxdy
极限:lim_{x \to \infty}: limx→∞ l i m x → ∞ lim_{x \to \infty} limx
\prod:∏,\int:∫,,,\bigcup:⋃,\bigcap:⋂
矩阵 : \begin{matrix}…\end{matrix}

$$
        \begin{matrix}
        1 & x & x^2 \\
        1 & y & y^2 \\
        1 & z & z^2 \\
        \end{matrix}
$$

1 x x 2 1 y y 2 1 z z 2 \begin{matrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \\ \end{matrix} 111xyzx2y2z2

$$X=\left(
        \begin{matrix}
            x_{11} & x_{12} & \cdots & x_{1d}\\
            x_{21} & x_{22} & \cdots & x_{2d}\\
            \vdots & \vdots & \ddots & \vdots\\
            x_{m1} & x_{m2} & \cdots & x_{md}\\
        \end{matrix}
    \right)
    =\left(
         \begin{matrix}
                x_1^T \\
                x_2^T \\
                \vdots\\
                x_m^T \\
            \end{matrix}
    \right)
$$


X = ( x 11 x 12 ⋯ x 1 d x 21 x 22 ⋯ x 2 d ⋮ ⋮ ⋱ ⋮ x m 1 x m 2 ⋯ x m d ) = ( x 1 T x 2 T ⋮ x m T ) X=\left( \begin{matrix} x_{11} & x_{12} & \cdots & x_{1d}\\ x_{21} & x_{22} & \cdots & x_{2d}\\ \vdots & \vdots & \ddots & \vdots\\ x_{m1} & x_{m2} & \cdots & x_{md}\\ \end{matrix} \right) =\left( \begin{matrix} x_1^T \\ x_2^T \\ \vdots\\ x_m^T \\ \end{matrix} \right) X=x11x21xm1x12x22xm2x1dx2dxmd=x1Tx2TxmT

  • 方程组
$$
\left\{ 
    \begin{array}{c}
        a_1x+b_1y+c_1z=d_1 \\ 
        a_2x+b_2y+c_2z=d_2 \\ 
        a_3x+b_3y+c_3z=d_3
    \end{array}
\right. 
$$

{ a 1 x + b 1 y + c 1 z = d 1 a 2 x + b 2 y + c 2 z = d 2 a 3 x + b 3 y + c 3 z = d 3 \left\{ \begin{array}{c} a_1x+b_1y+c_1z=d_1 \\ a_2x+b_2y+c_2z=d_2 \\ a_3x+b_3y+c_3z=d_3 \end{array} \right. a1x+b1y+c1z=d1a2x+b2y+c2z=d2a3x+b3y+c3z=d3

  • 行列式
$$
X=\left|
    \begin{matrix}
        x_{11} & x_{12} & \cdots & x_{1d}\\
        x_{21} & x_{22} & \cdots & x_{2d}\\
        \vdots & \vdots & \ddots & \vdots\\
        x_{m1} & x_{m2} & \cdots & x_{md}\\
    \end{matrix}
\right|
$$

X = ∣ x 11 x 12 ⋯ x 1 d x 21 x 22 ⋯ x 2 d ⋮ ⋮ ⋱ ⋮ x m 1 x m 2 ⋯ x m d ∣ X=\left| \begin{matrix} x_{11} & x_{12} & \cdots & x_{1d}\\ x_{21} & x_{22} & \cdots & x_{2d}\\ \vdots & \vdots & \ddots & \vdots\\ x_{m1} & x_{m2} & \cdots & x_{md}\\ \end{matrix} \right| X=x11x21xm1x12x22xm2x1dx2dxmd

  • 方程式
$$J(\theta)=\frac1{2m}\sum_{i=0}(y^i-h_\theta(x^i))^2$$
$$E=mc^2$$

J ( θ ) = 1 2 m ∑ i = 0 ( y i − h θ ( x i ) ) 2 J(\theta)=\frac1{2m}\sum_{i=0}(y^i-h_\theta(x^i))^2 J(θ)=2m1i=0(yihθ(xi))2
E = m c 2 E=mc^2 E=mc2

  • 分段函数
$$
f(n) =
\begin{cases}
n/2,  & \text{if $n$ is even} \\
3n+1, & \text{if $n$ is odd}
\end{cases}
$$

f ( n ) = { n / 2 , if  n  is even 3 n + 1 , if  n  is odd f(n) = \begin{cases} n/2, & \text{if $n$ is even} \\ 3n+1, & \text{if $n$ is odd} \end{cases} f(n)={n/2,3n+1,if n is evenif n is odd

如果你什么都不会,没关系。因为我也只会用LaTex排版公式和套用几个模板。

人是灵活的,不会用Latex,就用在线编辑器

https://latex.91maths.com/

参考
http://www.mohu.org/info/symbols/symbols.htm
https://jingyan.baidu.com/article/4b52d702df537efc5c774bc9.html
https://blog.csdn.net/baidu_38060633/article/details/79183905
http://www.cnblogs.com/Sinte-Beuve/p/6160905.html

刘润森! CSDN认证博客专家 Python Java 前端
17年就读于东莞XX学院化学工程与工艺专业,GitChat作者。Runsen的微信公众号是"Python之王",因为Python入了IT的坑,从此不能自拔。公众号内容涉及Python,Java计算机、杂谈。干货与情怀同在。喜欢的微信搜索:「Python之王」。个人微信号:RunsenLiu。不关注我公号一律拉黑!!!
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 猿与汪的秘密 设计师:白松林 返回首页
实付 19.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值